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1. Introduction

The importance of the completeness of a set of solutions used in a direct variational method is
herein discussed regarding a plate vibration application. The property is relevant to two issues: the
claim of an ‘‘exact’’ solution and the avoidance of the loss of eigenfrequencies. A paper by
Hurlebaus et al. [1] reports an ‘‘exact’’ series solution for calculating eigenfrequencies of
orthotropic free plates. A trigonometric series is proposed and after many, not always simple,
algebraic steps, a system of homogenous algebraic equations is derived. Although the approach
and the algebra are formally correct, some of the steps require certain discussion. The authors of
the present paper had previously, and in the same journal, published a study on free vibrations of
free isotropic plates [2] in which this topic is discussed. A method named whole element method
(WEM) is therein used. An extended trigonometric series for a two-dimensional domain is
employed and justified, in particular, a complete series of sines. Its equivalent in a series of cosines
is coincident with the solution reported in Ref. [1].

This issue is not tackled in Ref. [1] and neither is the question of uniform convergence of the
solution and its essential functions (meaning functions involving derivatives up to order k � 1;
with 2k the largest order of derivation in the differential equation). Not complying with these two
properties may lead to an approximate solution (Ritz method) or the loss of eigenvalues.

Hurlebaus and co-authors effectively employ a uniform convergence series for the deflection
shape W that results from the linear combination of a complete set in the two-dimensional
domain. However, in subsequent steps (Eqs. (32) and (33) of Ref. [1]) the uniform convergence of
the slope is lost with the consequence of the probability that the eigenvalue converges to an
approximate value and not to the exact one, or even more serious, as to jump to other eigenvalue.
On the other hand, the reported numerical results for a square orthotropic plate are correct. We
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believe that some known functions that are replaced by infinite Fourier expansions (convergence
in the mean) as in Eqs. (34) and (36) of Ref. [1] may fix the previous loss of uniform convergence.
But these infinite expansions are not always possible, neither their effects predictable. Finite
expressions are mixed with closed form functions (infinite expansions). Furthermore, the number
of terms used in the numerical evaluations (size of the matrix) and whether the same number was
used for all the modes, is not reported.

Additionally, we have adopted the concept of ‘‘arbitrary precision’’ numerical results since the
eigenfrequencies are theoretically convergent to the exact values (i.e., knowing that the combined
set is complete) but when found numerically, it is unavoidable to have a finite number of terms.
Then knowing its convergence to the exact value, the technique consists in fixing a number of digits
of desired accuracy and afterwards increasing the number of terms until these digits converge.

In short, in order to assert that the eigenvalues are theoretically exact (of arbitrary precision), it
is necessary to ensure that the deflection shape and its first derivatives have uniform convergence
to the classical solution (although unknown).

In what follows the effect of using an incomplete solution is shown and discussed and finally the
problem of a free orthotropic plate is tackled with WEM and frequency values found with
arbitrary precision are reported for various plate aspect ratios.

2. Illustration I: an incomplete solution

Let us show the use of a incomplete trigonometric series to find the first two symmetric–
antisymmetric eigenfrequencies of a square (side a), isotropic free plate. The frequency parameter is
O ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
where the flexural rigidity is D ¼ Eh3=12ð1 � n2Þ: The non-dimensional values are

known to be O1 ¼ 34:82 and O2 ¼ 61:13 (found with WEM and 15 terms [2]). Leissa [3] reports
O1 ¼ 35:02 and O2 ¼ 61:53; respectively, found with Ritz method using six beam functions.

As stated in Ref. [2], the following series constitutes a complete solution for a symmetric–
antisymmetric mode:

wMNðx; yÞ ¼
XM
i¼E

XN

j¼O

Aijsisj

aiaj

þ
XM
i¼E

aisi

ai

þ x �
1

2

� �
a0 þ

XN

j¼O

A0jsj

aj

" #
; ð1Þ

where E ¼ 2; 4; 6;y;M (even indexes) and O ¼ 1; 3; 5;y;N (odd indexes), si � sinðaixÞ; sj �
sinðajyÞ; am ¼ mp and the non-dimensionalized domain ½0; 1�: It may be shown that wMN as well as
its first derivatives are uniformly convergent. Moreover, since we are dealing with a free plate, it is
necessary that the inertial equilibrium be satisfied. The three conditions (inertial force and two
moments) in terms of the proposed solution are reduced toZ Z

wMNðx; yÞ dx dy ¼ 0; ð2aÞ

Z Z
wMNðx; yÞ x dx dy ¼ 0; ð2bÞ

Z Z
wMNðx; yÞ y dx dy ¼ 0; ð2cÞ

M.B. Rosales, C.P. Filipich / Journal of Sound and Vibration 261 (2003) 751–757752



Conditions (2a) and (2c) are satisfied identically by Eq. (1). On the other hand, condition (2b)
forces the following relationship among the coefficients of the summations:
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It is possible to choose a subset that fulfills this condition. A possible one is selecting

Aij ¼ A0j ¼ 0 ) a0 ¼
XM
i¼E

ai

a2
i

ð4Þ

with which the proposed solution for symmetric–antisymmetric modes is

wMNðx; yÞ ¼
XM
i¼E

ai

ai

si þ
12ðx � 1=2Þ

ai

	 

: ð5Þ

The satisfaction of statement (3) may be achieved by different sets of coefficients. However,
an arbitrary selection, like (4) leads to the incomplete solution (5). It should be noted that
the inertial equilibrium is not usually stated independently since it is included in the direct
method. Here it was explicitly required so as to derive an incomplete solution. The application
of WEM using this solution implies [2] the satisfaction of the following pseudo-virtual work
statement:

ðw00; dw00Þ þ l4ð %%w; d %%wÞ � l2½ð %%w; dw00Þ þ ðw00; d %%wÞ�

þ 2l2ð1 � nÞð %w0; d %w0Þ � O2ðw; dwÞjwMN
¼ 0; ð6Þ

where the aspect ratio l ¼ 1:
After the replacement of Eq. (5) in Eq. (6), the next trascendental equation results:

1 þ 24O2
XM
i¼E

1

a2
i ða

4
i � O2Þ

¼ 0: ð7Þ

The solution found with accuracy of 2 exact decimal digits yields O1 ¼ 61:67 and O2 ¼ 199:86
(in both cases found with M ¼ 30). Fig. 1 shows the resulting mode corresponding to O1 ¼ 61:67:
It is clear that the ‘‘true’’ first frequency was lost and that the second one (here the first) converges
to an approximate value. At the point we stated Eq. (5) it seemed an appropriate choice. But the
fact that we stated a function as the linear combination of an incomplete set leads to this incorrect
answer. The correct mode shape obtained with the complete solution and with O1 ¼ 34:82 is
depicted in Fig. 2. Comparing both mode shapes, although they look quite similar, the slight
difference led to the erroneous result.

In addition, another example of this situation is present in Gorman [4]. He employs the method
of superposition using a linear combination of functions which are not a complete set in the
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domain. As a consequence, in the table of results reported in that reference, the second frequency
of an isotropic square plate (doubly symmetric, O ¼ 19:61) is missing. A note of warning should
be given in this regard. Furthermore, in a more recent paper [5] Gorman makes use of the
superposition-Galerkin method. Again for the same reason, the first doubly symmetric mode is
missing for the isotropic plate.

Fig. 2. First symmetric–antisymmetric mode found using a complete set [2].

Fig. 1. First symmetric–antisymmetric mode found using an incomplete set.
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3. Illustration II: vibrations of an orthotropic plate using a complete solution

Let us introduce the following expansion—one among an infinite number—complete in a two-
dimensional domain:

wMNðx; yÞ ¼
XM
i¼1

XN
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The application of WEM to the free vibration problem of an orthotropic plate requires that

ðw00; dw00Þ þ bl4ð %%w; d %%wÞ þ l2ny½ð %%w; dw00Þ þ ðw00; d %%wÞ� þ 4gl2ð %w0; d %w0Þ � O2ðw; dwÞjwMN
¼ 0; ð9Þ

where l ¼ a=b is the plate aspect ratio, h is the thickness of the plate, b ¼ Ey=Ex; Ex and Ey are
the modulus of Young, nx and ny are the Poisson coefficients, g ¼ Dxy=Dx; Dxy ¼ Gxyh3=12;
Dx ¼ Exh3=12ð1 � nxnyÞ; Dy ¼ Eyh3=12ð1 � nxnyÞ:

When symmetric–symmetric modes are analyzed, both i and j are taken as odd indexes ð0Þ and
the WEM solution is as follows (also a complete subset):

wMNðx; yÞ ¼
X
i¼0

X
j¼O
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X
i¼0
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X
j¼O

bjsj þ k: ð10Þ

It should be mentioned that this extended series is uniformly convergent, as well as its first
derivatives. The application of the pseudo-virtual work (9) leads to the following set of equations:

aid
n

i þ
XM
q�0

bqgniq ¼ tni ; ð11Þ
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where
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The sums involved in the algebra are
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A numerical example was carried out and the arbitrary precision values of the frequency
parameter Ox ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dx

p
are reported in Table 1. Also the frequency values in Hz found with

the data reported in Ref. [1] and listed in Table 2, are depicted in Table 1 between parentheses.

Table 1

Natural frequency parameters Ox of an orthotropic plate for symmetric–symmetric modesa

Ox l ¼ a=b

1 0.4 2.5

Ox1 6.3285 1.0124 22.3276

(60.1737)b (9.6262) (212.2992)

Ox2 22.3601 3.8377 29.9740

(212.6083)b (36.4912) (285.0041)

Ox3 32.0613 5.4729 39.6175

(304.8509) (52.0384) (376.6981)

a Values in parentheses are frequencies in Hz found with the data of Table 2.
b Values of frequencies in Hz coincident with the ones reported in Ref. [1].

Table 2

Orthotropic plate data

a; b (m) h (m) r ðkg=m3Þ Ex ðGPaÞ Ey ðGPaÞ Gxy ðGPaÞ nx ny

0.254 0.001483 1584 127.9 10.27 7.312 0.22 0.0176654
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